In order to produce smaller amounts of oxygen, O2 from the air by adsorption of other gases can be separated. These air flows through molecular sieves. In this case, nitrogen and carbon dioxide are adsorbed and only O2 and argon pass through. This is used in O2 concentrator mainly used medically (oxygen for energy).
Almost all living organisms need O2 to live (typically give plants during photosynthesis but more O2 from than they consume). You see him mostly by breathing in air, or by absorption of water (dissolved oxygen). In high concentrations, however, it is toxic to most living things.The metastable, high-energy and reactive allotrope of three O2 atoms (O3) is called ozone. Atomic oxygen, ie O2 in form of free, single O2 atoms, is stable before only under extreme conditions, such as in vacuum of space or in hot stellar atmospheres. However, it has a significant meaning as a reactive intermediate in many reactions of atmospheric chemistry.
Some oxygen-rich inorganic compounds such as potassium permanganate, potassium nitrate (saltpeter), potassium chlorate and potassium chromate enter upon heating or reaction with reducing agents from oxygen. A further possibility of producing O2 in laboratory, is the decomposition of hydrogen peroxide on platinum-plated nickel foil. Pure O2 can be obtained by electrolysis of 30% potassium hydroxide solution of nickel electrodes. It Hydrogen and O2 are separated.
This promoted the combustion gas and Scheele called it "fire air" or the origin. He found that air consists of O2 and this "foul air". Completely independent, was two years later produced by heating mercuric oxide O2 gas, the Englishman Joseph Priestley. The Briton published his findings in 1774, Scheele published his book Chemical Observations of air and the fire but only in 1777.
Most white dwarfs, which are the final state of 97% of all stars in prior theory, exist side by helium and carbon to a large extent of oxygen. Technically O2 is today almost exclusively obtained by rectification of air. The method in 1902, first developed by Carl von Linde (Linde process) and designed by Georges Claude economically viable. Small amounts arising as a by-product in production of hydrogen by electrolysis of water.
Since these orbitals are completely filled with electrons, they do not contribute to binding. From the 2p orbitals are a total of six molecular orbitals with different energy level. The orbitals have this same energy. Electrons are distributed in molecular orbitals, it comes to following breakdown of eight p-electrons. These two valence electrons determine the properties of O2 molecule. O2 has allowed a total of three and energetically accessible quantum states for the distribution of these electrons.
Occupation of energy levels of molecular orbitals of O2 in ground and excited states. In ground state the spins of two valence electrons of Hund's rule are arranged in parallel in obedience. It is a triplet state with the term symbol 3g. It is the state with the lowest energy. Through the two unpaired electrons, the two orbitals are half occupied. This caused some characteristic properties, such as the diradical character and the paramagnetism of O2 molecule.
Usually takes O2 in its compounds, and in earth before. In earth's crust almost all minerals and rocks are so well oxygenated water next. Among the most important minerals include oxygen-containing silicates such as feldspars, mica and Olivine, carbonates such as calcium carbonate in limestone and oxides such as silica as quartz.
Almost all living organisms need O2 to live (typically give plants during photosynthesis but more O2 from than they consume). You see him mostly by breathing in air, or by absorption of water (dissolved oxygen). In high concentrations, however, it is toxic to most living things.The metastable, high-energy and reactive allotrope of three O2 atoms (O3) is called ozone. Atomic oxygen, ie O2 in form of free, single O2 atoms, is stable before only under extreme conditions, such as in vacuum of space or in hot stellar atmospheres. However, it has a significant meaning as a reactive intermediate in many reactions of atmospheric chemistry.
Some oxygen-rich inorganic compounds such as potassium permanganate, potassium nitrate (saltpeter), potassium chlorate and potassium chromate enter upon heating or reaction with reducing agents from oxygen. A further possibility of producing O2 in laboratory, is the decomposition of hydrogen peroxide on platinum-plated nickel foil. Pure O2 can be obtained by electrolysis of 30% potassium hydroxide solution of nickel electrodes. It Hydrogen and O2 are separated.
This promoted the combustion gas and Scheele called it "fire air" or the origin. He found that air consists of O2 and this "foul air". Completely independent, was two years later produced by heating mercuric oxide O2 gas, the Englishman Joseph Priestley. The Briton published his findings in 1774, Scheele published his book Chemical Observations of air and the fire but only in 1777.
Most white dwarfs, which are the final state of 97% of all stars in prior theory, exist side by helium and carbon to a large extent of oxygen. Technically O2 is today almost exclusively obtained by rectification of air. The method in 1902, first developed by Carl von Linde (Linde process) and designed by Georges Claude economically viable. Small amounts arising as a by-product in production of hydrogen by electrolysis of water.
Since these orbitals are completely filled with electrons, they do not contribute to binding. From the 2p orbitals are a total of six molecular orbitals with different energy level. The orbitals have this same energy. Electrons are distributed in molecular orbitals, it comes to following breakdown of eight p-electrons. These two valence electrons determine the properties of O2 molecule. O2 has allowed a total of three and energetically accessible quantum states for the distribution of these electrons.
Occupation of energy levels of molecular orbitals of O2 in ground and excited states. In ground state the spins of two valence electrons of Hund's rule are arranged in parallel in obedience. It is a triplet state with the term symbol 3g. It is the state with the lowest energy. Through the two unpaired electrons, the two orbitals are half occupied. This caused some characteristic properties, such as the diradical character and the paramagnetism of O2 molecule.
Usually takes O2 in its compounds, and in earth before. In earth's crust almost all minerals and rocks are so well oxygenated water next. Among the most important minerals include oxygen-containing silicates such as feldspars, mica and Olivine, carbonates such as calcium carbonate in limestone and oxides such as silica as quartz.
About the Author:
Discover the benefits of oxygen for energy with the help of this informative site. Gain full access to our homepage when you click on this link http://boostcanada.ca.
No comments:
Post a Comment